Learning with power l1-graph for single labeled image biometric recognition
نویسندگان
چکیده
Single labeled biometric recognition is one of the main challenges to graph-based transductive classification learning. To enhance the recognition rate of single labeled problem, sparse representation provides a feasible strategy for representation learning. In this paper, we developed a power l1-graph learning technique for semi-supervised learning, called label propagation by power l1-graph (LPPG). Different from all existing graph-based methods, we assume that the similarity relationship in the label space is a power function in the sample space. What is important is that the determinated power value measured by sparseness is given. Our method characterizes the second sparse processing, and seeks to find a reasonable label propagation way. This characteristic makes our algorithm more intuitive and more powerful than those methods based on the original l1-graph. This proposed method is applied to biometrics recognition and the experiment results show that our algorithm consistently outperforms those original l1-graph-based methods. This demonstrates that our method is a good choice for real-world biometrics applications, especially when there is only one labeled image.
منابع مشابه
Scalable Image Annotation by Summarizing Training Samples into Labeled Prototypes
By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملEvaluation of the Parameters Involved in the Iris Recognition System
Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...
متن کاملAutomated Authentication Using Hybrid Biometric System
A highly reliable biometric authentication system can be realised by using multiple biometric models. In this study, a framework that makes use of signaland image-processing algorithms, together with pattern recognition techniques, is applied to solve the problem of biometric pattern recognition in a unified way. In general, this problem can be broken down into the following taxonomy: sensors, ...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012